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Abstract-The first known exact analytical solutions are derived for the free vibrations of thick
(Mindlin) sectorial plates having simply supported radial edges and arbitrary conditions along the
circular edge. The general solutions to the Mindlin differential equations of motion contain non
integer order ordinary and modified Bessel functions of the first and second kinds, and six arbitrary
constants of integration. By exercising a careful limiting process, three regularity conditions at the
vertex of the radial edges are invoked to yield three equations ofconstraint among the six constants
for sector angles exceeding 1800 (re-entrant comers). Three additional linearly independent equa
tions among the six constants are obtained by satisfying the three boundary conditions along the
circular edge. Frequency determinant equations are derived for Mindlin sectorial plates with circular
boundaries which are clamped, simply supported, or free. Nondimensional frequency parameters
are presented for over a wide range of salient and re-entrant sector angles (300

~ a ~ 360°), and
thickness-to-radius ratios of0.1, 0.2 and 0.4. Frequency results obtained for Mindlin sectorial plates
are compared to those determined for classically thin sectorial plates, and the results are found to
be considerably different than those derived from thin plate theory, particularly for the fundamental
frequencies of plates having sector angles slightly greater than 1800 when the circular boundary is
free. The frequencies for 360° sectorial plates (i.e. circularplates having a hingedcrack) arecompared
with those for complete circular ones.

INTRODUCTION

Quite literally hundreds of published references exist (Leissa, 1969, 1977, 1981, 1987) on
the free vibrations of complete circular and annular, thin and thick plates (with no radial
boundaries). However, the scope of previous work done for the sectorial plate (see Fig. I)
is narrow. Several authors have offered approximate theoretical and experimental vibration
data for thin sectorial plates with various edge conditions on the circular and radial edges,
namely Ben-Amoz (1959), Westmann (1962), Bhattacharya and Bhowmic (1975), Rubin
(1975) and Maruyama and Ichinomiya (1981). Bapu Rao et al. (1977) and Guruswamy
and Yang (1979) proposed various Reissner sector plate finite element formulations for
approximate vibration analysis of thick circular and annular sectorial plates. Cheung and
Chan (1981) offered a three-diJPensional curved finite strip method for static and vibration
analyses of thin and thick sectorial plates with arbitrary conditions on the circular and
radial edges. Srinivasan and Thiruvenkatachari (1985) reported natural frequencies of
moderately thick Mindlin annular sector plates with clamped circular and radial edges.

The customary form of the exact analytical solutions for free vibrations of complete
circular thin plates with arbitrary boundary conditions are appropriate to sectorial thin
plates with simply supported radial edges (Leissa, 1969). These solutions involve non
integer order Bessel functions of the first and second kinds and two constants of integration,
since the modified Bessel functions of the first and second kinds are omitted to eradicate
all singularities at the plate origin (r = 0). Recent work by the present authors (Leissa et
al., 1992) advocates that use of the ordinary Bessel functions solution is incorrect for
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Fig. I. A thick sectorial plate with simply supported radial edges forming a re-entrant comer
(0: > 180°).

sectorial thin plates having simply supported radial edges and sector angle, IX > 1800 (form
ing a re-entrant corner, see Fig. 1). In this configuration, the singular vibratory bending
moment at the re-entrant corner is improperly represented by this solution. Nonetheless,
this work (Leissa et al., 1992a) does present some approximate, yet highly accurate,
vibration results for sectorial thin plates with IX> 180°. These results were obtained by
means of the Ritz method, using corner functions to represent the thin plate singularities
properly at r = o.

A subsequent paper by the present authors (Huang et al., 1992) documents the first
known exact analytical solutions for the free vibrations ofsectorial thin plates having simply
supported radial edges forming re-entrant corners (IX > 180°) and arbitrary circular edge
conditions. The solutions therein involve non-integer order ordinary and modified Bessel
functions of the first and second kinds, and four constants of integration. In the present
paper the above analytical procedure is extended to the flexural vibrations of Mindlin
sectorial plates having simply supported radial edges forming re-entrant corners. The
Mindlin simply supported radial edge conditions are defined such that the transverse
displacement, circumferential moment, and tangential rotation all vanish. The Mindlin
sectorial plates call for a Bessel function solution analogous to the classically thin plates,
but with six, instead of four, constants of integration. The analytical procedure requires
satisfying (i) the Mindlin differential equations ofmotion, (ii) the nine boundary conditions
along the radial and circular edges, and (iii) the three regularity conditions at the vertex of
the radial edges.

Frequency determinant equations are derived for Mindlin sectorial plates with circular
boundaries which are clamped, simply supported, or free. Nondimensional frequency par
ameters are presented for each of these plate configurations over a wide range of sector
angles (IX), including re-entrant ones, and thickness-to-radius ratios (hja) (see Fig. 1). The
singularities in the vibratory bending moments and shear forces at the vertex of Mindlin
sectorial plates are also identified.

EXACT SOLUTION

Consider in Fig. 1 the homogeneous, isotropic sectorial plate of thickness h (not
shown), with polar coordinates (r, 0) at the midplane. The vibratory displacements (u" uo, w)
of the midplane are assumed as

u, = z'P,(r, 0, t)

Uo = z'Po(r, 0, t)

w = w(r, 0, t), (I)
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where u, and Ue are components parallel to the midplane, w is transverse, t is time, and '1',
and 'I'e are the bending rotations of the midplane normal in the radial and circumferential
directions, respectively. The equations of motion in terms of stress resultants in polar
coordinates are (cf. Mindlin and Deresiewicz, 1954)

8M,/8r+r- 1 8M,e/8e+r-I(M,-Me)-Q, = (ph 3/12) 82'P,/8t2

8M,e/8r + r- 18Me/8e+2r- 1(M,e)-Qe = (ph 3/12) 82'Pe/8t 2

8Q,/8r+r- 1 8Qe/8e+r-1(Q,) = rph 82w/8t2, (2)

where p is the mass density per unit volume. The stress resultants (moments and shears)
are related to the transverse displacement and bending rotations by

M, = D[o'P,/or+vr- 1('1', +o'Pe/oe)]

Me = D[r- I('P,+8'Pe/oe)+v o'P,/or]

M,e = [(l-v)/2]' D[r- 1(8'P,/oe-'Pe)+o'Pe/or]

Q, = K
2Gh('P, +ow/or)

Qe = K
2Gh('Pe+r- 18w/oe),

(3a)

(3b)

(3c)

(3d)

(3e)

where D = Eh 3/12(l-v 2) is the flexural rigidity, Eis the modulus ofelasticity, v is Poisson's
ratio, K

2 = n 2/12 is the shear correction factor, and G is the shear modulus. Assuming first
a sinusoidal motion in time

then eqns (2) become

'P,(r, e, t) = r/J,(r, e) cos wt

'Pe(r, e, t) = r/Je(r, e) cos wt

w,(r, e, t) = W(r, e) cos wt (4)

oM,/or+r- 1oM,e/oe+r-I(M,-Me)-Q,+(w2ph3/12)r/J, = 0

oM,e/or+r-1 oMe/oe+2r- I(M,e)-Qe+(w 2ph 3/12)r/Je = 0

oQ,/or+r- 1oQe/oe+r-1(Q,) +w2phW = o. (5)

The transverse deflection (W) and the angular rotations (r/J, and r/Je) are defined in
terms of three potential functions cPl> cP2 and cP3 (Mindlin and Deresiewicz, 1954), as
follows:

r/J, = (0"1- 1) ocPl/or+(0"2 -1) OcP2/or+r-1 OcP3/0e

r/Je = (0"1- 1)r- 1 ocPl/oe+(0"2- 1)r- 1 OcP2/0e-OcP3/or

W = cPI +cP2'

where the following dimensionless parameters have been introduced

(6a)

(6b)

(6c)

(7)

(8)

(9)
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Substituting eqns (3) and (6) into (5), three Laplace equations in (PI, </>2 and </>3 are the
result after some algebraic manipulations

(V2+bD</>1 = 0

(V2+bD</>2 = 0

(V 2+bD</>3 =0,

where V2 is the harmonic differential operator, and

(10)

(11 )

The solution ofeqns (5) requires finding the potential functions, </>1, </>2 and </>3 that satisfy
eqns (10).

It is interesting that the literature documents considerable discrepancies in the use of
the transformation eqns (6)-(9), first proposed by Mindlin and Deresiewicz (1954), and
subsequently used by Irie et al. (1979, 1980, 1982). The expressions for b 1 and b2 used in
the analytical formulation of Callahan (1955) and in the numerical calculations of Rao and
Prasad (1975) not only differ from each other, but they indeed do not make eqn (6) satisfy
the equations of motion [eqns (5)]. Consequently, by using these incorrect transformation
equations, free vibration results calculated for circular, annular, and sectorial plates are
erroneously too stiff as the plate thickness is increased, as pointed out by Irie et al. (1979,
1980, 1982).

Utilizing the polar coordinates of Fig. I, it is assumed that

</> I (r, e) = Rn , sin (nne/a.)

</>2(r, e) = Rn , sin (nne/a.)

</> 3(r, e) = RnJ cos (nne/a.)

(12a)

(12b)

(12c)

with n = I, 2, 3, .... This results in the satisfaction of the simply supported boundary
conditions along e= 0 and e= a. exactly. That is

W(r,O) = W(r, ex) = 0

Mo(r,O) = Mo(r, a.) = 0

ljJ ,(r, 0) = ljJr(r, ex) = O.

(l3a)

(13b)

(l3c)

Then, from eqn (3c), M ro is nonzero along the radial edges. This is essential, otherwise
finding suitable displacement functions such as those in eqns (12) is prohibitive. Substituting
eqns (12) and considering the linear independence among sin (nne/ex) and cos (nne/ex) for
different n, eqns (10) become

(14)

where the primes indicate derivatives, and J.1 = nn/ex is positive and is typically non-integer.
Generally speaking, the solutions to eqns (14) involve ordinary and/or modified Bessel

functions of the first and second kinds (depending upon the signs of the bl), and six
constants of integration. Six linearly independent equations must be written among the
integration constants to solve the title free vibration problem. The three boundary con
ditions along the circular edge of the Mindlin sectorial plate leads to three of the six
equations. Three regularity conditions at r = 0 must be enforced to generate three additional
equations among the integration constants. These regularity conditions are
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l/J, = finite(,_0)

l/Jo = finite.
(r=O)

1613

(15a)

(15b)

(15c)

In eqns (8) and (11), b~ and b~ can be either positive or negative, while bf is always positive.
Two cases are pertinent to obtaining solutions to eqns (14): bf > 0, b~ < 0, b~ < °and
bf> 0, b~ > 0, b~ > 0. By carefully investigating eqns (8) and (11), one is able to find that
b~ must have the same sign as b~, that is, either positive or negative, while bf is always
positive.

Case I: bf > 0, b~ < 0, b~ < °(,.1,4 < l/RS)
In this case, the solutions of eqns (14) are

Rn,(r) = An/~(blr)+Bn, Y~(blr)

Rn,(r) = An,I~(b2r) +Bn,Kib2r)

Rn,(r) = AnJ~(b3r) +Bn,K~(b3r),

(16a)

(16b)

(16c)

where J~, Y~, I~ and K~ are ordinary and modified Bessel functions of the first and second
kinds, and An, and Bn, (i = 1,2,3) are arbitrary constants of integration. Equations (16) are
the same as the classical solution used for complete circular Mindlin plates, except that
(1) Il is not, in general, an integer, and (2) Bn" Bn, and Bn, are not necessarily set equal to
zero.

Considering now the displacement condition given by eqn (15a), since

(17)

then, by using eqn (6c), eqn (15a) becomes

The Bessel functions of the second kind may be expressed as (cf. Tranter, 1968)

Y~(br) = [cos Iln· J~(br)-J-ibr)]· (sin Iln) - I

Kibr) = - [I~(br) - Libr)]· (n/2)(sin nil) - 1.

By using eqns (17) and (19), eqn (18) is reduced to

The Bessel functions may be expressed in terms of their power series

(18)

(19a)

(19b)

(20)

(21a)

(21b)

where r is the gamma function. By substituting eqns (21) into (20), the resulting limit is
satisfied when the coefficients of r with degree - Il+ 2j less than or equal to zero vanish,
because Bn , and Bn , are finite. That is
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j = 0, 1,2, .... (22)

Indeed, p. > 2 results in Bn , = Bn , = 0, because in this case eqn (22) generates more than
one linearly independent homogeneous equation.

Using eqn (6a), the first rotation regularity condition given by eqn (I5b) results in

lim [(0" I - I )[An C5 IJ~(C5 I r) + Bn C5 IY,:(C5 Ir)]
r=>O 1 I,...

+ (0" 2 - I )[An,C52I~(C52r) +BnhK~(C52r)]

- (p./r)[AnJ~(C53r) + BnJK~(C53r)]] = finite. (23)

The derivatives·of the Bessel functions may be expressed as (cf. Tranter, 1968)

2J~(C5r) = J~_ 1(C5r) -J~+ I (C5r)

2 Y~(C5r) = Y~_ I (C5r) - Y~+ 1(C5r)

2I~(C5r) = I~_ 1(C5r) + I~+ 1(C5r)

2K~(C5r) = -K~_I(C5r)-K~+I(C5r). (24)

Using eqns (17) and (19), one obtains the following when eqns (24) are substituted into
eqn (23)

lim [(0"1 -I)(C5d2)(An J~_ I(C5 Ir) + Bn ([sin (p. -I)n] - I[cos (p.- I)n
r=>O 1 I

•J ~ _ I(C5 1r) - J _It + I (C5 1r)] + [sin (p. + 1)n] - 1J _~ _ I ( C5 1r)))

+ (0" 2 - I )(C52/2)(Anl~- I (C5 2r) - Bn,«n/2)[sin (p. - I )n] - 1

• [I_~+ I(C5 2r) - I~_I (C5 2r)] + [sin (p.+ l)n] - I I _~_I (C5 2r)))

- (p./r)(AnJ~(C53r) + Bn , (n/2)[sin p.n] - 1[I_~(C53r) - I~(C5 3r)])] = finite. (25)

This yields, upon substituting eqns (21)

00

lim L [(0"1 -1)(An,(C5d2)( -1)i(C5lrI2)~+2j-l. [j!r(p.+j)]-I
r=>O j~ 0,1

+ Bn,(C5 1/2)([cos (p. - I)n] • [sin (p. - I)n] - I • [( - I )j(C5 IrI2Y+ 2j- I]

. [j!r(p.+ j)] - 1 - [sin (p.- I)n] - 1. [( -IY(C5 Ir12) -~+ 2j+ 1]. [j!r( - p.+j+ 2)] - I

+ [sin (p.+ I)n]-I. [( -1)j(C5lr/2)-~+2j-I]. [j!r( -p.+j)]-I))

+ (0" 2- I)(An2 (C5 2/2)(C5 2r12)~+ 2j- I . [j!r(p. + j)] - 1

- Bn,(nC5 2/4)([sin (p. - I )n] -I . (C5 2rI2) -~+ 2j+ I. [j!r( - p.+j+ 2)] - I

_ [sin (p.-I)n] - 1 • (C52rI2)~+ 2j- I. [j!r(p.+j)]-I

+ [sin (p.+ I)nr 1 • (C5 2rI2) -~+ 2j- I. [j!r( - p.+j)] - I))

- (p.lr)(A n](C5 3rI2)~+ 2i. [j!r(p.+j + I)] - I

+ Bn,(nI2) (sin p.n)-I«C53r/2)-~+2j. [j!r( -p.+j+ 1)]-1

- (C5 3rI2Y+ 2j. [j!r(p.+j+ 1)) - I))] = finite. (26)

Because An and Bn (i = 1,2,3) are finite, satisfaction of eqn (26) requires that the
coefficients of r 'with po~er less than zero vanish. To clarify the analysis without loss of
generality, the range of p. is assessed in the subintervals °< p. < I, I < p. < 2 and p. > 2.
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Subcase I (a) : 0 < Jl. < I. In this range, all terms in eqn (26) vanish in the limit, except
those for j = O. The remaining terms contain r~- I and r-~- I. From the coefficients of
r-~-I

«0"1-I)(bd2)-~·[r( -Jl.) •sin (Jl.+ l)n]-I)Bn,

- «0"2- l)(n/2) (15 2/2) -~. [r( - Jl.) •sin (Jl. + I )n] - ')Bn,

- «nJl./2)(b 3/2) -~ . [r(l- Jl.) •sin Jl.n] - I)Bn, = o. (27)

Since sin (Jl.+ I)n = -sin Jl.n and r( - Jl.+ I) = - Jl.r( - Jl.), one can simplify eqn (27) to

(28)

From the coefficients of r~-'

«0"1 -1)(15 ,/2Y[r(Jl.)] - ')An,+ «0", -I)· cot (Jl.-I)n· (bd2Y[r(Jl.)] - I)Bn1

+ «0"2- 1)(b 2/2Y[r(Jl.)] - I)An, + «0"2 - I) ·n/[2 sin (Jl. - I)n] . (15 2/2Y [r(Jl.)] - ')Bn,

- (Jl.(b 3/2)~[r(Jl.+ I)] - I)An, + (nJl./[2 sin Jl.n] • (b 3/2Y [r(Jl.+ I)] - ')Bn, = o. (29)

Since sin (Jl.-I)n = -sin Jl.n and r(Jl.+ 1) = Jl.r(Jl.), one can also reduce eqn (29) to

(0", - 1)b)'An, + (0", - I) . cot Jl.n • 151]Bn1+ (0" 2- 1)b~An,

- (0"2 -I) ·n/[2 sin Jl.n]· b~Bn, -bl}An,+n/[2 sin Jl.n]· b'3Bn3 = O. (30)

From eqn (22), the following relation is applicable

(31)

and substituting eqn (31) into (28), one sees that

(32)

When eqns (31) and (32) are used in eqn (30), the latter simplifies to

(0" I - 1)b)'An 1 + (0"2 - I)b~An, + n/[2 sin Jl.n] •b2~«0" I - I) . cos Jl.n· bf~

- (0"2 - I)b~~ + (0", - 0"2)b~~)Bn, - b'3AnJ = O. (33)

Subcase I(b): 1 < Jl. < 2. In this range, all terms in eqn (26) vanish as r approaches
zero, except thosetermscontainingr-~+2j+I for j = 0, and r-Jl.+2j-1 for j = 0 andj = 1.
The remaining terms contain r-~+ I and r-~- '. In the limit, the coefficients of r-~-I yield
eqn (28). From the coefficients of r-~+ ,

(0"1-1)( -(b,/2)-~+2.[r( -Jl.+2) ·sin (Jl.-I)n]-'

- (b,/2) -~+ 2. [r( - Jl.+ I)· sin (Jl.+ I)n] - l)BnI

- (0"2 -I) ·n/2«b2/2) -~+ 2. [r( - Jl.+ 2) . sin (Jl.-I)n] - I

+(b2/2)-~+2. [r( -Jl.+ I) . sin (Jl.-I)n]-')Bn,

+ «nJl./2) (15 3/2) -~+ 2. [r( - Jl.+ 2) . sin Jl.n] - ')Bn = O.
3

(34)

Using sin (Jl.-I)n = - sin Jl.n and r( - Jl.+ I) = (- Jl.+ l)r( - Jl.+ I), eqn (34) simplifies to

(0", -1)( - Jl.+2)bl~+ 2Bn1 + (0"2 -1)( - Jl.+2)(n/2)b2~+ 2Bn, + (Jl.n/2)b3~+ 2Bn3 = O. (35)
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The three linearly independent homogeneous equations (22), (28) and (35) result in
Bn, = Bn, = Bn, = O.

Details of addressing the last regularity condition [eqn (15c)] are given in Appendix
A. The results there are exactly the same relations obtained from satisfying eqn (15b); that
is, eqns (A4) and (A6) are identical to eqns (28) and (30), respectively; and eqns (A4),
(A8) and (22) result in Bn, = Bn, = Bn, = O.

Subcase I (c): Jl > 2. In this range, one finds that eqns (22) and (28) resolve to
Bn, = Bn, = Bn, = O. Similarly, for integer values of Jl, it can be proven that
Bn, = Bn, = Bn, = O. The latter proof can be easily realized by using equations analogous
to eqns (19) and (21), but for Bessel functions of integer order.

Case II: bT > 0, b~ > 0, b~ > 0 (2 4 > l/RS)
In this case, the solutions of eqns (14) are

(36)

From the regularity condition on the transverse displacement [eqn (15a)], the following
relation is derived by using eqns (17) and (19a)

Assuming Hn , and Bn, are finite and using eqn (21a), the limit eqn (37) yields

b- ll +21 B +b- Il +21 B -0 +2'~0' '-0 121 n, 2 n,-' -Jl j"" ,j- , , , ....

The regularity condition [eqn (15b)] results in

(37)

(38)

lim [(al-l)bl[A n J~(blr)+Bn Y~(b,r)]
r:::::-O ! 1

+ (a2 - l)b2[An,J~(b2r) +Bn, Y~(b2r)]

-(Jl/r)[AnJI'(b 3r)+Bn'YI'(b 3r)]] = finite. (39)

Usingeqns (17), (19), (21) and (24), eqn (39) becomes

CIJ

lim L [(al-l)(An,(b l/2)( -1)1(b 1r/2)1'+21-1. [j!r(Jl+j)]-1
,,,,,0 1~ 0,1

+Bn,(bl/2)([cos (Jl-l)n]' [sin (Jl-l)n]-I. [( -1)1(b,r/2)1'+21-1]

•U!r(Jl + j)] - 1 - [sin (Jl- 1)n] ~- 1 • [( - 1)1(15 Ir/2) -1'+ 2j+ I] , [j!r( - Jl+j+ 2)] - I

+ [sin (Jl+ l)n] - I . [( - 1)1(15 Ir/2) -1'+ 21~ I] . [j!r( - Jl+ j)] - I))

+ (a2 -1)(An,(b 2/2)( -1)J(b2r/2)1'+21~" [j!r(Jl+j)]-1

+ Bn,(b 2/2)([cos (Jl-I)n]' [sin (Jl-1)n]-I, [( -1)1(b 2r/2)1'+21-1]

• [j!r(Jl+j)]- 1 - [sin (Jl-1)nr I. [( -1)1(b 2r/2) -1'+ 21+ I]. [j!r( - Jl+j+ 2)] - 1

+ [sin (Jl+ 1)n] - I . [( - 1)1(b 2r/2) -1'+ 2;- I] . [j!r( - Jl+ j)r I))

- (Jl/r)(AnJ( - 1)i(b 3r/2)1' + 21]. [j!r(Jl +j + I)r I

+ BnJ(cos Jln)(sin Jln) - 1[( - 1)1(15 3r/2)1' +21] . [j!r(Jl + j + 1)] - 1

- (sin Jln) - 1[( -1)1(15 3r/2) 1'+ 2J], [j!r( - Jl + j+ 1)r I))] = finite. (40)
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Because An and Hn (i = 1,2,3) are finite, satisfaction of eqn (40) requires that the
coefficients of r ~ith po~er less than zero vanish. As outlined previously, the range of J.1 are
considered in the subintervals 0 < J.1 < I and I < J.1 < 2.

Subcase II(a) : 0 < Jl < I. In this range, all terms in eqn (40) vanish in the limit, except
those for j = O. While the coefficients of r-I'- 1 suggest that

(41)

the coefficients of rl'- 1 require that

(0"1 -1)b!jAn,+ (0"1 -I)' cos J.17r' b!jHn,+ (0"2 -1)b~An,

+(0"2 -1)' cot J.17r' b~Hn, -b!jAn,-cot J.17r' b!jHn, = O. (42)

From eqn (38)

(43)

Substituting this into eqn (41) yields

(44)

Thus, by using eqns (43) and (44), eqn (42) reduces to

(0" 1- l)b!jAn,+ (0"2 -l)bjAn, + cot J.17r( - (0" 1- l)brl'

+ (0"2 -l)b~1' - (0"1 -0"2)b~l')b~Hn, -b!jAn, = O. (45)

Subcase II(b): 1 < J.1 < 2. In this range, all terms in eqn (40) vanish as r approaches
zero, except those containing r-I'+2j+ I for j = 0 and r-I'+2j-1 for j = 0 and j = 1. In the
limit, the coefficients of r-I'- 1 yield eqn (41), while the coefficients of r-I'+ I result in

Equations (38), (41) and (46) resolve to Hn, = Hn, = Hn, = 0, because these equations are
linearly independent homogeneous ones in Hn" Hn, and Hn, Similarly, it can be shown that
enforcing the rotation regularity condition [eqn (15c)] leads to the same relations obtained
from satisfying eqn (15b); that is, eqn (45) in Subcase I1(a) and Hn, = Hn, = Hn, = 0 in
Subcase I1(b).

In the same manner, it is easy to show that J.1 > 2 or integer values of J.1 result in
Hn, = Hn, = Hn, = O.

FREQUENCY DETERMINANTS

In the development above, the general solution to the differential equations of motion
[eqns (10)] and the associated simply supported radial edge boundary conditions [eqns
(13)] are defined by eqns (12), with the radial variation being given by eqns (16) for
).,4 < ljRS and by eqns (36) for ).,4 > ljRS. By invoking the regularity conditions at r = 0
[eqns (15)], three constraint relations among the integration constants An and Hn (i = 1,2,3)
have been derived, which are eqns (31)-(33) (for 0 < J.1 < 1 and)" 4 < IjRS), eq~s (43)-(45)
(for 0 < J.1 < I and ).,4> ljRS), and the result Hn, = Hn, = Hn, = 0 (for J.1 > 1). Three
additional equations are obtained by applying the boundary conditions along the circular
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Table 1(a). Nondimensional frequency parameters wa 2(ph/ D) li2 for sectorial plates having
simply supported radial edges and clamped circular edge; mode shapes have no radial node

lines (v = 0.3)

wa 2(ph/ D) li2

S h/a ~ Ot h/a = 0.1 h/a = 0.2 h/a = 0.4

I 114.276 95.5089 68.0625 41.2164
2 206.210 152.770 102.617 58.6756

30° 6.0 3 316.128 213.160 135.723 67.8976
4 445.210 274.896 167.962 75.1689
5 593.897 337.090 194.324 80.1025

I 51.1225 45.8329 36.8449 24.2064
2 111.092 91.5849 66.5856 40.1956

60° 3.0 3 190.440 143.520 97.2196 53.1441
4 289.340 199.374 128.142 56.4001
5 408.040 257.924 159.012 60.3729

1 34.9281 32.2624 27.0400 18.5761
2 84.6400 72.2500 54.6121 33.7561

90° 2.0 3 154.008 120.560 83.9056 47.8864
4 242.736 174.240 114.276 50.2681
5 351.563 231.040 144.962 54.1696

I 27.7729 26.0100 22.3729 15.7609
2 72.4201 63.0436 48.4416 30.5809

1200 1.5 3 136.656 109.203 77.2641 45.0241
4 320.020 161.544 107.330 47.3344
5 324.360 217.563 137.828 51.4089

I 22.4676 21.2521 18.5761 13.5424
2 62.8849 55.5025 " 5600 27.8784

165" 1.0909 3 123.2100 100.0000 71.7409 42.5104
4 203.063 151.044 101.606 45.0241
5 302.760 206.497 131.790 49.2804

I 21.3444 20.2500 17.8084 13.0321
2 60.8400 53.8756 42.3801 27.2484

180' 1.0 3 120.122 98.0100 70.5600 41.9904
4 199.092 148.840 100.200 44.6224
5 297.908 203.918 130.645 48.8601

tCiassical thin plate theory (Huang et al., 1992).

edge (r = a). As a result, six homogeneous, algebraic equations in Ani and En, are obtained
from which the vanishing determinant of the sixth order coefficient matrix yields the
eigenvalues

X= aJe = [wa 2(ph/D)1/2]1!2. (47)

Three types of boundary conditions are considered along the circular edge

clamped: W(a,8) = l/Jr(a, 8) = l/Je(a, 8) = 0

simply supported: W(a,8) = Mr(a, 8) = l/Je(a, 8) = 0

free: M r(a,8) = Mro(a, 8) = Qr(a,8) = o.

(48a)

(48b)

(48c)

The sixth order frequency determinants resulting from each of the boundary conditions
[eqns (57)] are easily reduced to fourth order by using eqns (31)-(33) or eqns (43)-(45).
Elements of these fourth order determinants are presented in Appendix B.

NUMERICAL RESULTS

Shown in Tables 1-3 are accurate nondimensional frequencies wa 2(ph/D) 1/2 obtained
for thick sectorial plates having simply supported radial edges, and clamped, simply
supported, or free conditions along the circular edge. All frequencies tabulated correspond
to mode shapes having no radial node lines. Tables 1-3 list the first five (nonzero) values
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Table l(b). Nondimensional frequency parameters wa2(phjD) 1/2 for sectorial plate~ having
simply supported radial edges and clamped circular edge; mode shapes have no radIal node

lines (v = 0.3)

wa2(phjD) 1/2

()( s h/a ~ 0t h/a = 0.1 h/a = 0.2 h/a = 0.4

I 21.4829 19.6538 17.3163 12.6988
2 60.9960 52.8999 14.6740 26.7598

1950 0.9231 3 120.242 96.6317 69.6263 41.5322
4 199.213 147.215 99.1851 44.5697
5 297.917 202.167 129.450 48.8592

I 21.6581 19.3072 16.9829 12.4614
2 61.1285 52.1801 41.0925 26.3704

210° 0.8571 3 120.371 95.6364 68.9117 41.1754
4 199.339 146.009 98.3763 44.6322
5 298.042 200.800 128.582 48.9224

1 22.0881 18.7907 16.2102 11.7850
2 61.4550 50.5139 39.4485 25.1970

2700 0.6667 3 120.690 93.0316 66.7843 39.9443
4 199.651 142.641 95.9219 44.7984
5 298.349 196.836 125.931 49.3737

I 22.3038 18.7246 15.7963 11.3248
2 61.6196 49.6543 38.3595 24.4074

3300 0.5455 3 120.851 91.4357 65.3261 39.0824
4 199.808 140.429 94.2448 44.8374
5 298.505 194.153 124.142 49.8352

1 22.3733 18.7212 15.6372 11.1376
2 61.6729 49.3365 37.9250 24.1020

360° 0.5000 3 120.903 90.8082 64.7472 38.7503
4 199.860 139.546 93.5896 44.8399
5 298.555 193.079 123.454 50.0273

I 10.216 9.941t 9.240t 7.468
2 39.771 36.479t 30.21 It 20.422

Complete circular 3 89.104 75.664t 56.682t 34.946
4 158.183 123.319t 85.57It 49.675
5 247.005 176.415 115.555 54.298

t Classical thin plate theory (Huang et al., 1992).
prie et al. (1980).

satisfying the vanishing frequency determinants, det [Cijl = 0, defined in Appendix B.
Results are shown for various salient angles (!X ~ 180°) (Tables la, 2a, 3a) and re-entrant
corner angles (!X> 180°) (Tables Ib, 2b, 3b) and thickness ratios (h/a = 0.1, 0.2 and 0.4).
A Poisson's ratio ofv = 0.3 has been used to calculate wa 2(ph/D) 1/2 for the simply supported
and free circular edge plates, but not the clamped circular edge ones, because in the latter
det [Cijl = 0 and wa 2(ph/D) 1/2 is independent of v (see Appendix B). Double precision (14
significant digit) arithmetic on an IBM 3090 machine has been used in evaluating the
vanishing frequency determinants.

For the thin sectorial plate results shown in Tables 1-3 (i.e. h/a ~ 0), the number of
nodal circles appearing in the mode shapes is s-l. For the thick sectorial plates, the mode
number (s) indicates the order of the frequencies without consistently representing the
number of nodal circles. That is, it is possible for modes which exhibit predominantly
thickness-shear actions to appear among the first five frequencies in the thickest case
(h/a = 0.4).

The focus of discussion here is to explore for the first time the variation of thick
sectorial plate frequencies, as the sector angle (!X) and thickness ratio (h/a) increase. For
constant !x, the frequency parameters, wa 2(ph/D) 1/2, shown in Tables 1-3 decrease as h/a
increases, due to the inherent shear deformation and rotary inertia present. It should be
noted, however, that as h/a increases, an alternative form of the frequency parameter,
wa(p/E) 1/2, increases in the lower modes, while in some of the higher ones this parameter
decreases. The latter situation occurs when the thickness-shear modes appear among the
frequencies shown.

SAS 31: 11-1
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Table 2(a). Nondimensional frequency parameters wa 2(ph/D) 1/2 for sectorial plates having
all edges simply supported; mode shapes have no radial node lines (v = 0.3)

wa 2(ph/ D) 1/2

oS h/a ~ ot h/a = 0.1 h/a = 0.2 h/a = 0.4

I 98.0100 84.4561 64.8025 40.7044
2 184.145 144.000 100.601 53.8756

30° 6.0 3 288.660 205.636 134.560 58.8289
4 412.496 268.304 167.444 72.2500
5 556.0164 331.968 176.358 75.3424

I 40.0689 37.4544 32.1489 22.9441
2 94.6729 81.9025 63.0436 44.3556

60° 3.0 3 168.740 134.096 94.8686 44.3561
4 262.764 190.992 126.788 55.9504
5 376.360 250.906 158.508 57.4564

I 25.7049 24.5025 21.9961 16.8100
2 70.2244 62.7264 50.4100 33.1776

90° 2.0 3 134.328 110.881 81.1801 42.2500
4 218.448 165.123 112.572 49.1401
5 321.844 223.503 144.240 52.8529

1 19.4481 18.8356 17.2225 13.6900
2 58.9824 53.5824 43.9569 29.7025

1200 1.5 3 118.374 99.4009 74.1321 41.3449
4 197.403 152.276 105.473 45.5625
5 295.840 209.670 136.890 50.6944

1 14.8996 14.5161 13.5424 11.1556
2 50.4100 46.3761 38.8129 26.8324

1650 1.0909 3 105.678 90.2500 68.3929 40.8321
4 180.634 141.848 99.4009 42.6409
5 275.228 198.246 130.645 49.0000

1 13.9129 13.6161 12.7449 10.5625
2 48.5809 44.7561 37.6996 26.1121

1800 1.0 3 102.8196 88.1721 67.0761 40.7044
4 176.890 139.476 98.0100 41.9904
5 270.603 195.720 129.277 48.7204

t Classical thin plate theory (Huang et al., 1992).

Considering now the frequency changes with increasing sector angle, one observes in
Tables l(a), 2(a) and 3(a) for the salient angles (C( ~ 180°) that wa 2(ph/D) 1/2 decreases
markedly for all modes. This is expected, since the circumferential distance between radial
supports increases with increasing c(, which in turn decreases the stiffness of the plate.
Conversely, as C( => 0, wa 2(ph/D) 1/2 becomes infinite for all modes.

However, frequency changes with increasing C( are more interesting for the re-entrant
sector angles. For h/a = constant, the frequency parameters, wa 2(ph/D) 1/2, are seen in
Tables l(b), 2(b) and 3(b) to change minimally over the range 195° ~ C( ~ 360°, with the
most rapid changes occurring for the smaller C( within this range. Frequency results are
shown for C( = 3300 to ascertain that no drastic changes in wa 2(ph/D) 1/2 occur due to the
"notch effect" as C( => 360°. For the clamped, simply supported, and free circular edge plates,
one can see that the frequency parameters obtained by using classical thin plate theory
increase as C( increases. In contrast, the frequency parameters obtained for the thick, clamped
and simply supported circular edge plates [Tables l(b) and 2(b)) decrease as C( increases,
except in the fourth and fifth modes ofsectorial plates having h/a = 0.4. For the free circular
edge thick plates [Table 3(b)), wa 2(ph/D) 1/2 decreases as C( increases, except in the lowest
frequency mode, which shows an increase as C( increases. This is because the lowest frequency
of a semicircular plate (C( = 180°) is zero, which corresponds to a rigid body rotation of the
plate about its hinged diameter.

The case of the sectorial plate having a free circular edge is interesting for re-entrant
corners, particularly for C( in the vicinity of 180°. Consider the fundamental (i.e. lowest)
frequency when C( = 195°. Table 3(b) shows a drastic difference in wa 2(ph/D) 1/2 between
the value 1.4045 obtained from classical, thin plate theory and that (0.6437) for h/a = 0.1
obtained from the present analysis using Mindlin theory. With increasing c(, the percentage
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Table 2(b). Nondimensional frequency parameters wa 2(ph/D) 1{2 for sectorial plates having
all edges simply supported; mode shapes have no radial node lines (v = 0.3)

wa\ph/D) 1{2

IX S h/a ~ 0t h/a = 0.1 h/a = 0.2 h/a = 0.4

I 14.0366 13.0907 12.2635 10.1789
2 48.6272 43.8256 36.8698 25.6359

1950 0.9231 3 102.921 86.7871 66.1120 40.6992
4 176.949 137.815 96.9459 41.5570
5 270.714 193.857 128.194 48.8114

I 14.1458 12.7827 11.9323 9.8862
2 48.7447 43.1490 36.2766 25.2323

2)00 0.8571 3 103.038 85.8045 65.3660 40.5343
4 177.066 136.600 96.1105 41.4591
5 270.831 192.466 127.299 48.9203

I 14.4129 12.3598 11.2021 9.0707
2 49.0344 41.6562 34.6347 24.0044

270° 0.6667 3 103.328 83.2835 63.1562 39.3606
4 177.356 133.239 93.5760 41.9031
5 271.121 188.457 124.570 48.6619

1 14.5467 12.3463 10.8524 8.5444
2 49.1807 40.9486 33.5701 23.1641

3300 0.5455 3 103.474 81.7788 61.6466 38.4878
4 177.503 131.054 91.8415 42.3444
5 271.268 185.753 122.730 48.1372

I 14.5897 12.3639 10.7267 8.3378
2 49.2279 40.6969 33.1474 22.8353

360° 0.5000 3 103.522 81.1927 61.0470 38.1517
4 177.550 130.183 91.1627 42.5261
5 271.315 184.672 122.022 47.9014

I 4.9352 4.894 4.777 4.396
2 29.7200 28.240 24.994 18.658

Complete circular 3 74.156 65.942 52.514 34.287
4 138.318 113.574 82.766 45.177
5 222.215 167.530 113.875 49.886

t Classical thin plate theory (Huang et al., 1992).

difference in fundamental frequencies obtained from these two plate theories becomes less.
Moreover, the drastic difference occurs only for the fundamental mode, where the large
inertial moment about the diametral axis (e = ± 90°) of the vibrating plate must be prin
cipally equilibrated by shearing forces distributed along the simply supported radial edges.
[The twisting moment (Mre) along the simple supports is expected to be small.] The shearing
force, however, will be large, because of the small moment arm available, r sin (rx/2). The
large shearing force becomes significant in the Mindlin theory, where shear deformation
effects are included. Nonetheless, in the higher modes additional circumferential node lines
exist, which are equivalent to knife edge supports. These equivalent knife edge supports,
along with the radial edge simple supports, are equilibrated by considerably smaller inertial
moments in the higher modes. Similarly, for the other circular edge conditions (Le. clamped
and simply supported, Tables I and 2), there appears to be no difficulty in the convergence
of the fundamental frequencies for h/a = 0.1 to the classical theory (h/a ~ 0), since the
circular edges transmit shear forces that aid in maintaining the dynamic moment equilibrium
of the plates.

Another reason for the large differences in fundamental frequency predicted by the
thick and thin plate theories lies in the differences in shear stress singularities at the re
entrant corner. As discussed in Appendix C, according to Mindlin theory, the shear force
varies as rl'-1 in the vicinity of r = 0 for 0 < fJ. < I (rx> 180°) and no such singularities
occur for fJ. ~ I (rx ~ 180°). These findings, which are quite different from those surmised
by using classical thin plate theory (Leissa et al., 1992), are supported by the data shown
in Tables 4 and 5. Listed therein are nondimensional frequencies for nearly semicircular
plates (rx = 178°,179°, 181° and 182°) with simply supported radial edges and free circular
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Table 3(a). Nondimensional frequency parameters wa 2(phID) 1,2 for sectorial plates having
simply supported radial edges and free circular edge; mode shapes have no radial node lines

(v = 0.3)

wa'(phID) 1/2

s hla ~ ot hla = 0.1 hla = 0.2 hla = 0.4

I 47.4721 43.2556 36.3525 25.4611
2 128.766 101.481 74.9835 49.4448

30' 6.0 3 291.499 160.362 108.985 66.8339
4 320.410 221.724 140.807 76.2373
5 448.592 284.405 183.326 83.1343

I 12.4609 12.0645 11.3138 9.4827
2 53.1441 48.2275 39.9601 26.9454

60" 3.0 3 112.148 94.5309 70.8627 47.4666
4 190.716 147.992 102.271 53.0625
5 289.340 205.725 132.874 63.5496

I 5.3824 5.2781 5.1144 4.6406
2 35.2836 33.0338 28.6685 20.6416

90" 2.0 3 84.4561 73.8757 57.7235 35.5860
4 153.512 123.772 88.5312 46.5424
5 242.114 179.260 119.308 56.6482

1 2.6896 2.6651 2.6195 2.4746
2 27.5625 26.1080 23.2208 17.3914

120" 1.5 3 76.7401 63.9168 51.0925 32.5870
4 135.956 111.797 81.4903 44.0020
5 219.632 166.008 112.256 53.1281

I 0.7921 0.7869 0.7813 0.7614
2 21.7756 20.8319 18.9129 14.6919

165 1.0909 3 61.9369 55.9893 45.6462 29.9767
4 122.103 102.083 75.643 42.4517
5 201.924 155.162 106.360 50.2766

I O.ot O.Ot O.ot O.Ot
2 20.5209 19.7109 17.9784 14.0888

180' 1.0 3 59.9076 54.2580 44.4342 29.3764
4 119.0286 99.9360 74.3320 42.1967
5 197.765 152.752 105.034 49.6602

t Classical thin plate theory (Huang et al., 1992).
t Rigid body rotation.

edge and thickness ratios ranging from classically thin (h/a ~ 0) to very thick (h/a = 0.4).
Indeed, as h/a increases in the range 0.02 ~ h/a ~ 0.4, wa 2(ph/D) 1/2 decrease albeit minimally.

Theoretically speaking, the influence of shear forces is reflected in the potential energy
of the Mindlin theory, whereas such forces are inherently absent from the potential energy
derived from the classical plate theory. In Mindlin theory, the singularities of shear forces
contribute a significant amount of energy such that the fundamental frequencies of nearly
semicircular plates with rx = 181 0 and 1820 with h/a = 0.02 (Table 4) are substantially
reduced from those obtained for the classically thin plates (h/a ~ 0) by approximately
66.5% and 65.2%, respectively. In contrast, no shear singularities exists for rx ~ 180°,
although a small influence of transverse shears is evidenced by the fundamental frequencies
for rx = 1780 and rx = 1790 with h/a = 0.02 (Table 4), which are reduced from those fre
quencies for h/a ~ 0 by approximately 2.3% and 3.7%, respectively.

Unfortunately, computational difficulties prevented extending the frequencies results
of Tables 4 and 5 to h/a < 0.02. As h/a = 0, the arguments (8) become prohibitively large
for proper numerical evaluation of the modified Bessel functions of the second kind (Y~

and K/l in the frequency determinants (Appendix B).
The results of Table 3(b) are extended to thinner plates in Table 6, where frequencies

are given for 195 0
~ rx ~ 360° and for h/a = 0.02, 0.03 and 0.05. It is interesting to note the

significant difference in wa 2(ph/D) 1/
2 calculated using the thick (Mindlin) and thin (classi

cal) plate theories, even for the small thickness ratio of h/a = 0.02. The difference in
wa 2(ph/D) 1/2 is more pronounced for If. =1800 and less for If. =360°. Clearly, one can see
in Table 4 that the shear singularities derived from Mindlin theory contribute significantly
in reducing the potential energy of thin sectorial plates having re-entrant angles rx.
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Table 3(b). Nondimensional frequency parameters wa2(ph/D) Ij2 for sectorial plates having
simply supported radial edges and free circular edge; mode shapes have no radial node lines

(v = 0.3)

wa2(ph/D) 1/2

s hla ~ Ot hla = 0.1 hla = 0.2 hla = 0.4

1.4045 0.6437 0.5974 0.5422
2 20.5428 19.0860 17.4162 13.6673

1950 0.9231 3 59.9349 53.2445 43.6628 28.9816
4 119.084 98.6168 73.4343 40.5994
5 198.003 151.212 104.085 42.3157

1 1.8884 1.0422 0.9414 0.8253
2 20.5959 18.6476 16.9773 13.3101

210° 0.8571 3 60.0327 52.4741 43.0216 28.6269
4 119.185 97.5610 72.6619 40.3919
5 198.107 149.942 103.254 42.1498

1 2.7586 2.0614 1.8052 1.4960
2 20.7233 17.8576 15.8946 12.2763

270° 0.6667 3 60.2745 50.6900 41.2080 27.5015
4 119.434 94.7908 70.3547 39.8251
5 198.364 146.388 100.719 41.5890

1 3.1164 2.5769 2.2498 1.8188
2 20.7858 17.6299 15.2906 11.5953

3300 0.5455 3 60.3959 49.7738 40.0081 26.6996
4 119.560 93.0921 68.7747 39.4656
5 198.495 144.052 98.9829 41.1970

1 3,2248 2.7389 2.3916 1.9158
2 20.8057 17.5718 15.0640 11.3300

360D 0.5000 3 60.4364 49.4371 39.5301 26.3809
4 119.600 92.4253 68.1493 39.3228
5 198.537 143.119 98.3051 41.0526

I O.ot O.ot O.ot O.ot
2 9.003 8.868§ 8.505§ 7.464

Complete circular 3 38.443 36.041§ 31.111§ 22.268
4 87.750 76.676§ 59.645§ 36.935
5 156.82 126.274§ 90.059§ 47.418

tClassical thin plate theory (Huang et al., 1992).
t Rigid body rotation.
§ Irie et at. (1980).

As ex approaches 3600
, the radial boundaries of the sectorial plate become coincident,

forming a hinged crack with no circumferential moment (Mo) transferred across the bound
aries. The frequencies of these plates may be compared with the corresponding ones (Le.
no radial node lines) for complete circular plates (Tables 1-3). The frequencies of the
complete circular plates are lower than those of the 360° sectorial plates, since the stiffnesses
of the latter are typically larger due to the presence of the hinged crack.

CONCLUDING REMARKS

The first known exact analytical solutions have been derived here for the flexural
vibrations of thick (Mindlin) sectorial plates having simply supported radial edges. The
general solution involves non-integer order ordinary and modified Bessel functions of the
first and second kinds, and six constants of integration. The analytical procedure requires
one to enforce the nine boundary conditions along the radial and circular edges, and the
three regularity conditions at the vertex of the radial edges.

Frequency determinant equations have been derived for Mindlin sectorial plates having
clamped, simply supported, or free circular boundaries. Nondimensional frequency par
ameters have been calculated for each of these plate configurations for both salient
(ex ::;::; 180°) and re-entrant (ex > 180°) sector angles, and a variety of thickness ratios (hja).

In certain special cases, solutions for sectorial plates having simply supported radial
edges may be adapted from the solutions for complete circular plates with clamped, simply
supported, or free boundaries. This is possible when the sector angle (ex) is an integer



1624 C. S. HUANG et al.

Table 4. Nondimensional frequencies for nearly semicircular thick plates having simply
supported radial edges and free circular edge; (v = 0.3)

wa'(ph/D) 12

s h/a ~ Ot h/a = 0.1 h/a = 0.2 h/a = 0.4

I 0.2601 0.2537 0.2524 0.2473
2 20.7025 19.8488 18.0931 14.1632

1780 1.0112 3 60.2176 54.4718 44.5837 29.4512
4 119.465 100.202 74.4942 42.2253
5 198.528 153.049 105.198 49.7363

1 0.1849 0.1777 0.1768 0.1734
2 20.6116 19.7794 18.0353 14.1256

179° 1.0056 3 60.0625 54.3641 44.5089 29.4133
4 119.246 100.068 74.4131 42.2110
5 198.246 152.898 105.116 49.6983

I O.ot O.ot O.Ot O.ot
2 20.5209 19.7109 17.9784 14.0888

180" 1.0 3 59.9076 54.2580 44.4342 29.3764
4 119.029 99.9360 74.3320 42.1967
5 197.765 152.752 105.034 49.6602

1 0.3844 0.1262 0.1246 0.1212
2 20.5209 19.6621 17.9361 14.0580

181 0 0.9945 3 59.9076 54.1814 44.3782 29.3482
4 119.028 99.8381 74.2682 40.2399
5 197.965 152.6386 104.9662 40.8334

1 0.5476 0.1839 0.1801 0.1739
2 20.5209 19.6152 17.8946 14.0280

182" 0.9890 3 59.9076 54.1049 44.3223 29.3211
4 119.028 99.7422 74.2044 40.2399
5 197.965 152.527 104.901 40.8155

t Classical thin plate theory (Huang et aI., 1992).
t Rigid body rotation.

Table 5. Nondimensional frequencies for nearly semicircular thick plates having simply
supported radial edges and free circular edge (v = 0.3)

wa'(ph/D) 1/2

s h/a ~ Ot h/a = 0.02 h/a = 0.03 h/a = 0.05

I 0.2601 0.2541 0.2541 0.2540
2 20.7025 20.5816 20.5372 20.4060

178° 1.0112 3 60.2176 59.7931 59.4641 58.4598
4 119.465 118.2771 117.Q23 /13.318
5 198.528 195.5020 192.150 182.680

I 0.1849 0.1781 0.1780 0.1780
2 20.6116 20.5064 20.4630 20.3329

179° 1.0056 3 60.0625 59.6648 59.3362 58.3375
4 119.246 118.096 116.845 113.150
5 198.246 182.474

I O.Ot O.ot O.Ot O.ot
2 20.5209 20.4331 20.3897 20.2608

1800 1.0 3 59.9076 59.5382 59.2115 58.2154
4 119.029 117.916 116.668 112.984
5 197.765 195.035 191.701 182.272

I 0.3844 0.1288 0.1282 0.1274
2 20.5209 20.3816 20.3383 20.2095

181 0 0.9945 3 59.9076 59.4472 59.1223 58.1284
4 119.028 117.788 116.543 112.865
5 197.965 191.540 182.123

1 0.5476 0.1907 0.1891 0.1870
2 20.5209 20.3311 20.2878 20.1592

1820 0.9890 3 59.9076 59.3609 59.0346 58.0446
4 119.028 /17.662 /16.420 112.748
5 197.965 194.709 191.382 181.977

t Classical thin plate theory (Huang et al., 1992).
t Rigid body rotation.
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Table 6. Nondimensional frequency parameters wa2(ph/D) 1{2 for thin sectorial plates having
simply supported radial edges and free circular edge; mode shapes have no radial node lines

(v = 0.3)

wa2(ph/D) 1{2

IX S h/a ~ 0t h/a = 0.02 h/a = 0.03 h/a = 0.05

I 1.4045 0.7569 0.7172 0.6867
2 20.5428 19.8916 19.7723 19.6311

1950 0.9231 3 59.9349 58.5225 58.1132 57.1170
4 119.084 116.4241 115.077 111.435
5 198.003 193.2100 189.635 180.322

I 1.8884 1.2544 1.1997 1.1449
2 20.5959 19.5364 19.4313 19.2721

210° 0.8571 3 60.0327 57.9121 57.4321 56.4001
4 119.185 115.563 114.015 110.460
5 198.107 191.823 188.189 179.024

I 2.7586 2.4649 2.3855 2.2801
2 20.7233 19.6249 19.3134 18.9225

270° 0.6667 3 60.2745 57.6081 56.7581 55.2049
4 119.434 114.490 112.460 108.160
5 198.364 189.888 185.633 175.563

I 3.1164 2.9929 2.9080 2.8224
2 20.7858 19.9809 19.5974 19.0096

3300 0.5455 3 60.3959 58.0644 56.9965 55.0564
4 119.560 114.918 112.335 107.330
5 198.495 189.888 173.976

I 3.2248 3.1329 3.0594 2.9929
2 20.8057 20.0704 19.7154 19.0969

360° 0.5000 3 60.4364 58.3696 57.1385 55.0564
4 119.600 115.133 112.375 106.916
5 198.537 190.164 184.808 173.449

t Classical thin plate theory (Huang et al., 1992).

submultiple of 180° (i.e. IX = 180/n, n = 1,2,3, ...). The frequencies and mode shapes of
these sectorial plates are identical to the complete circular ones having nodal diameters,
because the nodal diameters of the latter duplicate the simply supported radial edges of the
sectorial plates.

Frequency results obtained for Mindlin sectorial plates have been compared to those
determined previously for classically thin sectorial plates. It was found that the shear
deformation effects are especially important for the fundamental frequencies of plates
having sector angles slightly in excess of 1800 when the circular boundary is free, due to the
large shear forces developed at the radial edges. Basically, the shear forces near, = 0 of
thick sectorial plates varies as ,1'-1 for 0 < J1 < I (IX> 180°). For J1 ~ 1 (IX ~ 180°), no
singular shear forces exist at the vertex of thick sectorial plates. These singular shear forces
contribute significantly to the potential energy of thick (Mindlin) sectorial plates. Besides
this, the frequencies for 360° sectorial plates (i.e. circular plates stiffened by a hinged crack)
have been compared with those for complete circular ones.

Acknowledgement-This research was supported by the National Science Foundation, Award No. MSS-9157972.

REFERENCES

Ben-Amoz, M. (1959). Note on deflections and flexural vibrations of clamped sectorial plates. ASME J. appl.
Mech. 26, 136-137.

Bhattacharya, A. P. and Bhowmic, K. N. (1975). Free vibration of a sectorial plate. J. Sound Vibr. 41, 503-505.
Bapu Rao, M. N., Guruswamy, P. and Sampath Kumaran, K. S. (1977). Finite element analysis of thick annular

and sector plates. Int. J. Nuclear Engng Design 41, 247-255.
Callahan, W. R. (1955). On the flexural vibrations of circular and elliptic plates. Quart. appl. Math. 13,371-380.
Cheung, M. S. and Chan, M. Y. T. (1981). Static and dynamic analysis of thin and thick sectorial plates by finite

strip method. Comput. Struct. 14, 79-88.
Guruswamy, P. and Yang, T. Y. (1979). A sector finite element for dynamic analysis of thick plates. J. Sound

Vibr. 62, 505-516.
Huang, C. S., Leissa, A. W. and McGee, O. G. (1993). Exact analytical solutions for the vibrations of sectorial

plates with simply supported radial edges. ASME J. appl. Mech. 60,478-483.



1626 c. S. HUANG et al.

Irie, T., Yamada, G. and Aomura, S. (1979). Free vibration of a Mindlin annular plate of varying thickness.
J. Sound Vibr. 66, 187-197.

Irie, T., Yamada, G. and Aomura. S. (1980). Natural frequencies of Mindlin circular plates. ASME J. appl. Mech.
47,652--655.

!rie, T., Yamada, G. and Takagi, K. (1982). Natural frequencies of thick annular plates. ASME J. appl. Mech.
49,633-638.

Leissa, A. W. (1969). Vibration of plates. NASA SP-160, U.S. Government Printing Office.
Leissa, A. W. (1977). Recent research in plate vibrations (1973- I 976) : complicating effects. Shock Vibr. Digest

10,21-35.
Leissa, A. W. (1981). Plate vibration research (1976-1980): complicating effects. Shock and Vibr. Digest 13,

19-36.
Leissa, A. W. (1987). Recent studies in plate vibration (1981-1985): part II, complicating effects. Shock Vibr.

Digest 19, 10-24.
Leissa, A. W., McGee, O. G. and Huang, C. S. (1993). Vibrations of sectorial plates having corner stress

singularities. ASME J. appl. Mech. 60,134--140.
Maruyama, K. and Ichinomiya, O. (198 I). Experimental investigation of free vibrations of clamped sector plates.

J. Sound Vibr. 74, 563-573.
Mindlin, R. D. and Deresiewicz, H. (1954). Thickness-shear and flexural vibrations of a circular disk. J. appl.

Phys. 25,1329-1332.
Rao, S. S. and Prasad, A. S. (1975). Vibrations of annular plates including the effects of rotary inertia and

transverse shear deformation. J. Sound Vibr. 42, 305-324.
Rubin, C. (1975). Nodal circles and natural frequencies for the isotropic wedge. 1. Sound Vibr. 39, 523-526.
Srinivasan, R. S. and Thiruvenkatachari, V. (1985). Free vibration of transverse isotropic annular sector Mindlin

plates. J. Sound Vibr. 101, 193-201.
Tranter, C. J. (1968). Bessel Functions with Some Physical Applications. English University Press.
Westmann, R. A. (1962). A note on free vibrations of triangular and sector plates. J. Aerospace Sci. 29, 1139-·

1140.
Williams, M. L. (1952). Surface stress signularities resulting from various boundary conditions in angular plates

under bending. Proceedings of the First u.s. National Congress ofApplied Mechanics, pp. 325-329.

APPENDIX A: INVESTIGATION OF THE SECOND REGULARITY CONDITION
FOR EDGE ROTATION

Using eqns (6a), (12) and (16), the second rotation regularity condition given by eqn (15c) results in

!~ [(0', -1)(/l/r)[A,Jp(<5 ,r) + B", Yp(<5, r)] + (0' 2 - I )(/l/r)[An/" (<5 ,r)+ Bn,Kp (<5,r)]

-<5,[An/~(<5,r)+Bn,K~(<5,r)]] = finite. (AI)

Applying eqns (17), (19), (21) and (24) to eqn (AI) yields

x

lim I [(0', -1)(/l/r)(AnJ - l)i(<5,r/2)P+ 2i. [j!r(/l+j+ IW'
r_O j= 0,1

+ BnJcot we' [( -1)1(<5 ,r/2)P+ 21]. [jlr(,u +j+ IW'

- [sin ,un]-' . [( -1)1(<5,r/2)-"+ ,)]. [j!r( -,u+j+ l)r I))

+ (0'2 -1)(,u/r)(An,(<5,r/2)P+ 2). [j!r(,u+j+ IW'

+ B., (n/(2 sin ,un)' (<5,rj2)-pHi '[j!r( -,u+j+ IW'

- (<5,r/2),H 2;. [j!r( -/l+j+ l)r I»~ -<5 J(A n,(<5 Jr/2)P+2i-' • [2j!r(,u+ jW '

-B,,(n/4)([sin (,u-I)nr '((<5 Jr/2)-P+2 i +" [j!r( -/l+j+2)] ,

_ (<5,r/2)"+ 2j·' • [j!r(/l+J)] .,)

+ [sin (/l+ I)n] -, (b J r/2) -/<+ 2) '. [j!r( -/l+})] - I»~] = finite. (A2)

Case A I : 0 < ,u < I
In this range, all terms in eqn (A2) vanish in the limit, except those for j = O. The remaining terms contain

rP-' and r- P - '. From the coefficients of r- P-'

((0', -1),u(<5 ,/2)-P[r( -,u+ I) . sin /In] - I)B" - ((0", -1)(,un/2)(b,/2)-P' [r( -/l+ I)' sin /lnr ')Bn,

-((b,n/4)(<5,/2)-P'[r(-/l)'sin (/l+l)71r')Bn, = O. (A3)

Since sin (/l + I)n = - sin /In and f( -/l + I) = -/If( -Ill, eqn (A3) simplifies to

(0", -1)<5 I P Bn,-(n/2)(0'2 -1)<5',"B" - (n/2)b)p B'J = O. (A4)
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From the coefficients of ,p- I
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«a, -1)jl(<5,/2)P[f(jl + IW ')An, + «a, - I)' jl cot jln' (<5,/2)P[r(jl+ IW' )Bn,

+ «a2 - l)jl(<5 2/2)P[r(jl+ IW ')An, - «a2 -I)' jln/(2 sin jln) . (<5 2/2)p[r(jl + IW ')Bn,

- «<5 ,/2) "[r(jlW ')An, -(n/(2 sin (jl-I)n)' (<5,/2)'[r(jlW ')Bn, = O. (AS)

Since sin (jl-I)n = -sin jln and f(jl+ I) = jlf(jl), eqn (AS) reduces to

(a, -1)<5~An,+ (a, -I) 'cot jln' <5~Bn, + (a 2-1)<5iAn,

- (a 2 - I) . <5i . n/(2 sin jln)Bn, - <5~An, + <5~' n/(2 sin jln)Bn] = O. (A6)

Equations (A4) and (A6) are identical to eqns (28) and (30), respectively.

Subcase ] (b) : I < jl < 2. In this range, all terms in eqn (A2) vanish as , approaches zero, except those terms
containing ,-P+' + 2j for j = 0 and ,-'-' + 2j for j = 0 and j = 1. The remaining terms contain r- P+' and r-"- '. In
the limit the coefficients of ,-P-' yield eqn (A4). From the coefficients of ,-p+ I

(a,-I)jl«<5,/2)-,+2. [r( -jl+2) 'sin jln]-')Bn,

+ (a, - I)' jln/2«<5,/2) -,+ 2. [r( - jl+ 2) . sin jln] - ')Bn,

+ «<5,n/4) (<5 ,/2) -,,+' .[f( - jl + 2) . sin (jl-I)n] - ,

- (<5,/2) -,+, .[r( - jl+ I)' sin (jl+ I)n] - ')Bn) = O.

Using sin (jl-I)n = -sin jln and r( - jl+ I) = (-jl+ I)r( - jl+ I), eqn (A7) simplifies to

The three linearly independent eqns (22), (A4) and (A8) result in Bn, = Bn, = Bn, = O.

(A7)

(A8)

APPENDIX B: ELEMENTS OF FREQUENCY DETERMINANTS

For simplicity of the calculations, the following nondimensional variables are introduced [see eqns (8) and
(9)]

5, = a<5" R = R/a 2
, S = S/a 2

• (BI)

(B2)

Elements of the vanishing fourth order frequency determinant, det [C,J = 0, (i,j = 1,2,3,4) are given below
for each of the circular edge conditions described by eqns (57). Different forms are required for 0 < L < I
(0£ > 180°) and for jl> I (0£ < 180°). Besides this, the determinant forms depend upon whether 14 < I/RS or
1 4 > I/RS.

When 0 < jl < I, there are no radial node lines in the free vibration mode shapes. Mode shap.es with radial
node lines result from jl > I, because radial node lines duplicate simply supported boundary conditions.

For 0 < jl < I (0£ > 180°): 14 < I/RS.
(i) Clamped circular edge:

C'I = J p (5tl
C 12 = ]p(52)

C 13 = n/2' (51/52)" Yp (51) +Kp (52)

C'4 = 0

C 21 = (a, -I)[Jl!p(5,) - 5,Jp+ 1(5,)]

C22 = (u2- I )[jl]p(52)+52]p+I(52)]

C2J = n/2' (a, -1)(5,/52)p[jl Yp(5,) -5, Yp+ 1(5,)] + (a2 -I)[jlKp(52) -52K p+, (52)] - jl(a, - u 2)(5,/52)"K p(5J)

C 24 = - jl]p(5J)

CJI = (a, -1)Jl!p(5,)

C'2 = (a2 -1)jl]p(52 )

CJJ = n/2' (a I -1)(5,/52)p • jlYp(51) + jl(a2-1)Kp(52) - (u, -(2)(5J/52)p[jlKp(5J) -5JK p+, (5J)]

CJ4 = - [jl]p(5J) +5 J]p+' (5J)]

C41 = (a, -1)5~

C42 = ( lT2- 1)5i

C4J = (2 sin jln) -, (n5i') . [(a, -1)5i' cos jln - (a 2-1)5iP+ (a I - (2)5~p]

C44 =-h
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(ii) Simply supported circular edge: C" are given by eqns (B2), except for i = 2, which are defined as follows:

C" = (0",-1)( -el;Jp(eI,)+(I-v)[jl(jl-I)Jp(eI,)+eI,Jp+ ,(eI,)])

C 22 = (O",-I)(ellIp(eI,)+(I-v)[jl(jl-I)Ip(eI,)-el,Ip+ ,(eI,)])

C" = n/2' (0", - IHeI,/eI,)P( -el; Yp(eI,) + (1- v)[jl(jl-I) Y,,(eI,) + eI, Yp+ ,(eI,))

+ (0" 2 - IHellKp(eI,)+ (1-v)[jl(jl-I )Kp(eI,) + eI,Kp+ ,(eI,)])

+(0", -O",HeI]/eI,)P. (I-V)jl[ -(jl-I)Kp(eI])+eI,K"t ,(eI,)]

C '4 = - (1- v) jl[(jl- 1)Ip(eI,) +eI,Ip+ ,(eI,)]. (B3)

(iii) Free circular edge: C 2) and C4j are defined in eqns (B3) and (B2), respectively. C ') and C 'j are defined
as follows:

CII = 2(0", -l)jl[(jl-I)Jp(eI,)-el,Jp+ ,(eI,)]

C 12 = 2(O",-I)jl[(jl-I)I,,(eI,)+eI,Ip+,(eI,)]

c" = njl(O" , -l)(eI,/eI,)P[(jl-l) Yp(eI,)-el, Y,,+ ,(eI,)]

+2(0", -I )jl[(jl- 1)Kp(eI,) -el,Kp+ ,(3",)]

- (0", - 0" ,HeI,/eI,)" . [2jl(jl- I )K"(eI,)+ eli Kp(eI,) + 2e1,Kp+, (eI,)]

C14 = - [2jl(jl- I )1" (eI,)+ elil"(eI,) - 2e1,I,, +,(el3)]

CJI = O",[jlJp(eI,)-el,Jp+ ,(eI,)]

CJ2 = O",[jlIp(eI,)+eI,I"+,(eI,)]

C" = n/2' 0", (eI, /eI,)P[jl Yp(eI,) - eI, Y" + ,(eI,)] + 0" ,[jlKp(eI,) - eI,Kp+ ,(eI,)] - (0", - 0" ,HeI,/eI,)" . [jlKp(eI,)]

Cj4 = -jlI" (eI,). (B4)

14 > I/RS.
(i) Clamped circular edge:

CII = Jp(eI,)

C 12 = Jp(eI,)

C'3 = -(3",/eI,)"Y,,(eI,)+ Yp(eI,)

C 14 = 0

C" = (0", -1)[jlJp(eI,) -el,J"+, (eI,)]

C" = (O",-I)[jlJp(eI,)-el,J"+ ,(eI,)]

c" = - (0", -IHeI,/eI,)P[jl Yp(eI,) - eI, Yp+' (eI,)] + (0", -I)[jl Y"(eI,) - eI, YH ,(eI,)] - jl(O", - 0" ,)(el3/eI,)" Yp(el3)

C24 = -jlJp(eI,)

CJI = (O",-I)jlJp(eI,)

C3l = (0", -1)jlJp(eI,)

c" = - jl(O", - I)(eI,/eI,)" . Yp(el ,)+ jl(O", -I) Yp(eI,) - (0", - 0" ,Hel3/eI,)"[jl Yp(el3) - eI, Y"+ ,(eI,)]

C'4 = -[jlJp(eI,)-el3J,,+,(eI,)]

C41 = (0", -1)eI\'

C" = (0", -1)eI~

c., = cot jln' eI,"' [- (0", -1)eI;" + (0", -I)ell" - (0", -O",)elip]

C44 = -el~.

(ii) Simply supported circular edge: Cij are given by eqns (B5), except for i = 2, which are as follows:

C 21 = (0", -IH - eI;J"(eI,) + (1- v)[jl(jl-I)Jp(eI,) + eI,Jp+,(eI,)])

C 22 = (0", - IH - ellJp(eI,) + (1- v)[jl(jl-I)Jp(eI,) + eI,Jp+,(eI,)])

c" = -(O",-I)(eI,/eI,)P( -el;Yp(eI,)+(l-v)[jl(jl-I)Yp(eI,)+eI, Y,,; ,(eI,)])

+ (0", - IH - ell Yp(eI,) + (1-V)[jl(jl- I) Yp(eI,) + eI, Y"+ ,(eI,)])

+ (0", - O",)(el3/eI,)"' (1- v) jl[ - (jl-I) Yp (el3)+ e5, Y" +, (eI,)]

C'4 = (I-V)jl[ -(jl-I)Jp(eI,)+el3J"+ ,(eI,)].

(B5)

(B6)

(iii) Free circular edge: C'j and C 4j are defined in eqns (B6) and (B5), respectively. C'j and C'j are defined
as follows:
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Cll = 2(ul-l)fI[(fI-l)Jp(51)-51Jp+ ,(51)]

C12 = 2(u z-l)fI[(fI-l )Jp (5z) - b2Jp + I (52)]

C ll = -2f1(ul-l)(51/52)p[(Jl-I) Yp(51)-51Yp+ 1(5\)]

+ 2(a2 -l)Jl[(Jl-I) Yp(52) - 52 Yp+1(52)]
- (u 1 - (2)(5J /52)P . [2Jl(Jl- I) Yp (5J ) - 5~ Yp(5 j) +25l Yp+ I (5J )]

C 14 = - 2Jl(fI- I)Jp (5J ) + 5~Jp(5J) - 253Jp + I (5)

C 31 = a][JIli31)-5,Jp+ I (51)]

C J2 = a2[JIlp(52)-52Jp+l(52)]

C J j = - a] (5 1/52)P[Jl Yp (51) - 31Yp + 1(51)] + 0" 2 [Jl Yp(52) - 52 Yp+ 1(52)]- Jl(O" I - u 2)(5j /52)p . Yp(5J )

CJ4 = -JlJp(b j ). (B7)

For Jl > I (IX < 180°): This case is a propos to all sectorial plate vibration modes when IX> 180°, and to those
modes having one or more radial node lines when 1800 < IX < 360°. As previously shown, Bn , = Bn , = BnJ = 0,
and thus, the sixth order determinants reduce to third order ones (i.e. det [ej ] = 0, i,j = 1,2,3).

;:4 < 1IRS.
(i) Clamped circular edge:

CII = Jp (3 1 )

C I2 = I p (32)

C IJ =0

C 21 = (0",-I)[JIli31)-3I Jp+I (5.)]

Cn = (u2-l)[J.dp(32)+52Ip+,(52)]

C 23 = - Jllp(5)

C 31 = (0",-I)JIli5 j)

C 32 = (U2 -1)Jllp(52)

C)) = -[fl1p(b)+b)Ip+](33)]. (B8)

(ii) Simply supported circular edge: C;J are given by eqns (B8), except for i = 2, which are defined as follows:

C 21 = (a] -l){ -3fjp(3])+ (1- v)[Jl(Jl-l)Jp(51) +5]Jp+ I (31)]}

Cn = (0"2 -l){5ilp(b2) +(1-v)[Jl(p-I)Ip(b2) -b2I p+ I (b2 )]}

C2J = -(l-v)p[(Jl-I)Ip(b)+b)Ip+,(3&

(iii) Free circular edge: C 2) are defined in eqns (B9). C Ij and C 3} are defined as follows:

C'I = 2(u] -1)Jl[(p-I)Jp(51) -b.Jp+ I (b,)]

C 12 = 2(0"2-l)/l[(p-l)Ii52)+52Ip+I(52)]

C l3 = - [2p(jl-I)Ip(b)+3Up(b3) -2b3I p+, (b)]

C JI = 0"\[/lJp(5 1)-b,Jp+ .(31)]

C 32 = 0'2 [jllp(b2 ) +52Ip+, (32)]

C33 = -p1p (5J ).

(B9)

(BIO)

;:4> I IRS.
The elements of the vanishing third order determinants, det [Cu] = 0 (i,j = 1,2,3), corresponding to the

clamped, simply supported, and free circular edge conditions in this case are identical to those given by eqns (B5)
(B7), except for j = 3, where C;) = Ci4 (i = 1,2,3) in eqns (B5)-(B7).

APPENDIX C: INVESTIGATION OF SINGULARITIES OF VIBRATORY
BENDING MOMENT AND SHEAR FORCE

Previous work detailing an analytical solution for free vibrations of classically thin sectorial plates having
simply supported radial edges (Huang et al., 1992) has concluded that the vibratory bending moments in the
region of the vertex (r = 0) vary as rP - 2 for I ~ Jl ~ 2 (900 < IX ~ 180°) and r- P for 0 < Jl < I (IX > 180°). These
singular stress orders are identical to those associated with the static biharmonic functions derived by Williams
(1952). The intent here is to investigate the order of singularity in the vibratory bending moments and shear forces
at the vertex of thick (Mindlin) sectorial plates with simply supported radial edges. In these plates, the strength
of the singularities increases with the sector angle, mainly due to the abrupt change of direction of the simply
supported radial edges.

Consider the four cases: Case I(a): Jl ~ I, bt > 0, 151 > 0, b~ > 0; Case I(b): Jl ~ 1, of > 0, o~ < 0, b~ < 0;
Case I1(a): 0 < Jl < 1, bi > 0, bi > 0, bj > 0; and Case I1(b) : 0 < Jl < I, lii > 0, 151 < 0, oj < o.
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Case I(a): p.;;' I, D; > 0, D~ > 0, Dj > 0; (2 4
) I/RS)

Since Bn , = Bn , = Bn ) = 0, eqns (12) and (36) yield the exact solution for free vibration as

<P, (r, 0) = An,J"(D, r) sin p.0

<p,(r,O) = A,,/"(D,r) sin p.0

<PJ(r,O) = A,,/"(DJr) cos p.O.

(CI)

(C2)

(C3)

Consider first the radial vibratory bending moment given by eqn (3a). Let M, be the quantity in the bracket of
eqn (3a) evaluated at time (I) and along a radial line (0 = constant). Then, substituting eqns (6) and (CI)-(C3)
into (3a) yields

M, = An, (0", -1)(DiJ~'(D ,r) + (v/r)[D ,J~(D ,r) - (p.' /r)J"(D 1r)])

+ An,(O" 2 -1)(D~J~'(D2r) + (v/r)[D,J;(D,r) - (p.'/r)J"(D,r)])

+ AnJ(I- v)/r)«p./r)J"(DJr) - P.DJ;(DJr». (C4)

By substituting eqn (2Ia) into (C4), and performing the indicated differentiations, one finds that all terms of r

with order larger than zero vanish in tht~ limit. Thus

Clearly, the radial bending moment, M, in the proximity of the vertex (r = 0) varies as r" '.
Consider now the radial vibratory shear force given by eqn (3d). Let Q, be the quantity in the bracket of the

radial shear force eqn (3d) evaluated at time (I) and along radial line (0 = constant). By employing eqn (6), the
second regularity condition [eqn (l5b»), and the solution eqn (CI), the following limit on (2, as r goes to zero
holds

lim (2, = lim(ljI,aW/ar)o~,o",,"nt
,=>0 r=>O

= finite value + ~~11J [An,D ,J~(D, r) + An2D,J~(D,r»).

Utilizing eqns (17) and (24), the limit eqn (C6) approaches a finite value.

(C6)

Case I(b): p.;;, I, D; > 0, D~ < 0, Dj < 0; (24 < I/RS)
In this case, the ordinary Bessel functions J", in eqns (C2) and (C3) are simply replaced by modified Bessel

functions I •. Following the same limiting procedure given in the previous Case I(a), one also finds that near r = 0
M, varies as p.-2. Similarly, for the radial shear force (Q,), J~(D2r) in eqn (C6) are replaced by I~(D2r). When
eqns (17) and (24) are substituted in the result, (2, is finite in the limit as r goes to zero.

Case lI(a): 0 < p. < I, D; > 0, D~ > 0, Dj > 0; (2 4
) I/RS)

The exact solution in this case is given by eqns (12) and (36) with the relationship between the integration
constants given by eqns (38), (41) and (42). Substituting these into the radial bending moment (M,) [eqn (3a»)
and using eqns (l9a), (2Ia), (41) and (42), one can derive the following limit equation

limM, = lim [(I-v)(p.-I )(0", -1)(p.-2)D;-·Bn +(O",-I)(p.-2)Dj-"Bn,
r=>O ,=0 1_

+ P.Dj-·B,,)(r/2) -./[4 sin p.n· r( - p.+ 2))). (C7)

Substituting eqns (43) and (44) into (51) yields

limM, = lim [Bn,(I- v)(p.-I)D,"«p.-2)[ - (0", -I)D; + (0", -1)Dn
r=O r=>O-

+ (0", - 0" ,)p.Dj)(r/2) -·/[4 sin p.n· r( - p. + 2))). (C8)

It is apparent from eqn (C8) that in the neighborhood of r = 0, M, varies as r-".
Using eqns (12), (36), (41) and (42), the following limit equation is obtained for (2, [eqn (3d»)

The above is expanded further through the use of eqns (17), (19), (21) and (24)

~~ (2, = finite value + ~ ~~ [(D) An, + DjA",) (r/2)·- '[r(p.»)- ,

+D, (cot (p.-I)n· (D ,r/2)"- '[r(p.W' + cosec (p.+ I)n' (D 1r/2)-·- '[r( - p.W ')Bn,

+D,(cot (p.-I)n· (D,r/2)"-1 [r(p.W' + cosec (p.+ I)n' (D 2r/2) -.- '[r( -p.W I)Bn,). (CIO)

Substituting eqn (43) into (54) yields
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lim (2, = finite value+11im [(rj2)"- 1[r(IlW 1(o~A. +o~A. +cot 1l1t· 02P( -o;P +O~P)B. )].
r~O r=-O I 2 2

Clearly, (2, in the region of the vertex (r = 0) varies as rP- I.
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(CII)

Case Il(b): 0 < Il < 1, or > 0, o~ < 0, o~ < 0; (A.' < IjRS)
In this case, the exact solutions given by eqns (12) and (16) are substituted into the radial moment (M,) [eqn

(6a)]. By simplifying the result through eqns (19), (21), (28) and (30), and performing a limiting process analogous
to that outlined in Case Il(a), the findings are that M, varies as r P near r = O. For the radial shear force (Q,)
[eqn (6d)], the solution eqns (12) and (16) along with (31) are used to establish a limit relation on (2, analogous
to eqn (CII). As in Case Il(a), (2, varies rP-

1 near r = O.
By the same manner, it can be shown that the circumferential bending moment (Me), twisting moment (M~),

and circumferential shear force (Qe) varies in r near the vertex as those findings for M, and Q, in Cases I(a), I(b),
Il(a) and Il(b).

In summary, the strength of the moment and shear force singularities at the vertex of thick (Mindlin) sectorial
plates having simply supported radial edges is independent of the plate thickness (h). This is contrary to what
one might expect from the three-dimensional physical sense of a thick sectorial plate, but it is however, what one
should derive from the two-dimensional mathematical models, such as Mindlin and classical thin plate theories.
The bending moments at the vertex (r = 0) of Mindlin sectorial plates varies identically to those occurring in
classical thin ones, namely r P for 0 < Il < I and r P- 2 for I < Il < 2. If one utilizes the analytical solution for the
vibrations of sectorial thin plates with simply supported radial edges (Huang et al., 1992), one is able to find that
the shear forces near r = 0 vary according to r-(P+ I) when 0 < Il < I (IX> 180°), and rP- J when Il ~ I (IX ,;;; 180°).
In contrast, the shear forces near r = 0 of thick sectorial plates vary as r P-

1 when 0 < Il < I. For Il ~ I, no singular
shear forces exist at the vertex of thick sectorial plates. Of course, the singular shear forces contribute to the
potential energy of thick (Mindlin) sectorial plates, whereas such forces are absent in the potential energy of
classically thin sectorial plates.


